QCE Specialist Mathematics Trial Examination Paper 1:Tech-free Section 1

Quality educational content

Kilbaha Education PO Box 2227 Kew Vic 3101 Australia Tel: (03) 9018 5376 kilbaha@gmail.com https://kilbaha.com.au All publications from Kilbaha Education are digital and are supplied to the purchasing school in both WORD and PDF formats with a school site licence to reproduce for students in both print and electronic formats.

IMPORTANT COPYRIGHT NOTICE FOR KILBAHA PUBLICATIONS

(1) The material is copyright. Subject to statutory exception and to the provisions of the relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Kilbaha Pty Ltd.

(2) The contents of these works are copyrighted. Unauthorised copying of any part of these works is illegal and detrimental to the interests of the author(s).

(3) For authorised copying within Australia please check that your institution has a licence from <u>https://www.copyright.com.au</u> This permits the copying of small parts of the material, in limited quantities, within the conditions set out in the licence.

(4) All pages of Kilbaha files must be counted in Copyright Agency Limited (CAL) surveys.

(5) Kilbaha files must **not** be uploaded to the Internet.

(6) Kilbaha files may be placed on a password protected school Intranet.

Kilbaha educational content has no official status and is not endorsed by any State or Federal Government Education Authority.

While every care has been taken, no guarantee is given that the content is free from error. Please contact us if you believe you have found an error.

CAUTION NEEDED!

All Web Links when created linked to appropriate Web Sites. Teachers and parents must always check links before using them with students to ensure that students are protected from unsuitable Web Content. Kilbaha Education is not responsible for links that have been changed in its publications or links that have been redirected.

Trial assessment 2021

Multiple choice question book

Specialist Mathematics

Paper 1— Technology-free

Section 1

Instructions

- Answer all questions in the question and response book.
- This book will not be marked.

QUESTION 1

The diagram shows a circle of radius 2 on an Argand diagram. The points shown u, v and w are equally spaced around the circle and are the solutions of the equation P(z) = 0. Then

QUESTION 2

Which one of the following relations is **not** the graph of a straight line passing through the origin with gradient -1?

(A)
$$\{z: |z+1| = |z-i|\}$$

(B)
$$\{z: |z-1| = |z+i|\}$$

(C)
$$\{z: \operatorname{Re}(z) + \operatorname{Im}(z) = 0\}$$

(D)
$$\{z: \operatorname{Arg}(z) = -\frac{\pi}{4}\} \cup \{z: \operatorname{Arg}(z) = \frac{3\pi}{4}\}$$

© Kilbaha Education This page must be counted in surveys by Copyright Agency Limited (CAL) http://copyright.com.au

QCE Specialist Mathematics Trial Examination Paper 1:Tech-free Section 2

Quality educational content

Kilbaha Education PO Box 2227 Kew Vic 3101 Australia Tel: (03) 9018 5376 kilbaha@gmail.com https://kilbaha.com.au

School name	
Given name/s	
Family name	

Trial assessment 2021

Question and response book

Specialist Mathematics

Paper 1— Technology-free

Time allowed

- Perusal time 5 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response booklet.
- Calculators are not allowed.
- QCAA formula sheet provided.

Section 1 (10 marks)

• 10 multiple choice questions

Section 2 (60 marks)

• 9 short response questions

Section 1

Instructions

- Chose the best answer for Questions 1-10.
- This section has 10 questions and is worth 10 marks.
- Use a 2B pencil in the A, B, C, or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

	Α	В	С	D
1.	0	0	\bigcirc	\bigcirc
2.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10.	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Section 2

Instructions

- Write using black or blue pen.
- Questions worth more than one mark require mathematical reasoning and/or working to be shown to support answers.
- If you need more space for a response, use the additional pages at the back of this booklet.
- On the additional pages, write the question number you are responding to.
- Cancel any incorrect response by ruling a single diagonal line through your work.
- Write the page number of your alternative/additional response, i.e. See page ...
- If you do not do this, your original response will be marked.
- This section has ten questions and is worth 60 marks.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 11 (6 marks)

Find an antiderivative of $\frac{3x-5}{\sqrt{25-9x^2}}$, for $x \in (-b,b)$, stating the value of *b*.

© Kilbaha Education This page must be counted in surveys by Copyright Agency Limited (CAL) <u>http://copyright.com.au</u>

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

Coloulus

Page	17

Mensuration			
circumference of a circle	$C = 2\pi r$	area of a circle	$A = \pi r^2$
area of a parallelogram	A = bh	area of a trapezium	$\frac{1}{2}(a+b)h$
area of a triangle	$A = \frac{1}{2}bh$	total surface area of a cone	$S = \pi r s + \pi r^2$
total surface area of a cylinder	$S = 2\pi r h + 2\pi r^2$	surface area of a sphere	$S = \pi r^2 h$
volume of a cone	$V = \frac{1}{3}\pi r^2 h$	volume of a cylinder	$V = \pi r^2 h$
volume of a prism	V = Ah	volume of a pyramid	$V = \frac{1}{3}Ah$
volume of a sphere	$V = \frac{4}{3}\pi r^3$		

$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$	$\int x^n dx = \frac{1}{n+1} x^{n+1} + c$
$\frac{d}{dx}\left(e^{x}\right) = e^{x}$	$\int e^x dx = e^x + c$
$\frac{d}{dx} \left(\log_{e} \left(x \right) \right) = \frac{1}{x}$	$\int \frac{1}{x} dx = \log_e(x) + c$
$\frac{d}{dx}(\sin(x)) = \cos(x)$	$\int \sin(x) dx = -\cos(x) + c$
$\frac{d}{dx}(\cos(x)) = -\sin(x)$	$\int \cos(x) dx = \sin(x) + c$
$\frac{d}{dx}(\tan(x)) = \sec^2(x)$	$\int \sec^2(x) dx = \tan(x) + c$
$\frac{d}{dx}\left(\sin^{-1}\left(\frac{x}{a}\right)\right) = \frac{1}{\sqrt{a^2 - x^2}}$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c$
$\frac{d}{dx}\left(\cos^{-1}\left(\frac{x}{a}\right)\right) = \frac{-1}{\sqrt{a^2 - x^2}}$	$\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1}\left(\frac{x}{a}\right) + c$
$\frac{d}{dx}\left(\tan^{-1}\left(\frac{x}{a}\right)\right) = \frac{a}{a^2 + x^2}$	$\int \frac{a}{a^2 + x^2} dx = \tan^{-1} \left(\frac{x}{a}\right) + c$

© Kilbaha Education This page must be counted in surveys by Copyright Agency Limited (CAL) <u>http://copyright.com.au</u>

Calculus			
chain rule	If $h(x) = f(g(x))$ then h'(x) = f'(g(x))g'(x)	If $y = f(u)$ and $u = g(x)$ then $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$	
product rule	If $h(x) = f(x)g(x)$ then h'(x) = f(x)g'(x) + f'(x)g(x)	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	
quotient rule	If $h(x) = \frac{f(x)}{g(x)}$ then $h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	
integration by parts	$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$	$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$	
volume of a solid of revolution	about the <i>x</i> -axis	$V = \pi \int_{a}^{b} \left[f(x) \right]^{2} dx$	
	about the y-axis	$V = \pi \int_{a}^{b} \left[f(y) \right]^{2} dy$	
Simpson's rule	$\int_{a}^{b} f(x) dx \approx \frac{w}{3} \Big[f(x_{0}) + 4 \Big[f(x_{1}) + f(x_{3}) + \dots \Big] + 2 \Big[f(x_{2}) + f(x_{4}) + \dots \Big] + f(x_{n}) \Big]$		
simple harmonic motion	If $\frac{d^2x}{dt^2} = -\omega^2 x$ then $x = A\sin(\omega t + \alpha)$ or $x = A\cos(\omega t + \beta)$		
	$v^2 = \omega^2 \left(A^2 - x^2 \right)$ $T = \frac{2\pi}{\omega}$	$f = \frac{1}{T}$	
acceleration	$a = \frac{dv}{dt} = \frac{d^2x}{dt^2} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$		
Real and complex numbers			

complex number forms	$z = x + yi = r(\cos(\theta) + i\sin(\theta)) = r\cos(\theta)$
modulus	$\left z\right = r = \sqrt{x^2 + y^2}$
argument	$\arg(z) = \theta, \ \tan(\theta) = \frac{y}{x}, \ -\pi < \theta \le \pi$
product	$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$
quotient	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$
De Moivre's theorem	$z^n = r^n \mathrm{cis}(n\theta)$

Statistics		
binomial theorem	$(x+y)^{n} = x^{n} + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{r}x^{n-r}y^{r} + \dots + y^{n}$	
permutations	${}^{n}P_{r} = \frac{n!}{(n-r)!} = n \times (n-1) \times (n-2) \times \dots \times (n-r+1)$	
combinations	${}^{n}C_{r} = {\binom{n}{r}} = \frac{n!}{r!(n-r)!}$	
sample means	mean	μ
	standard deviation	$\frac{\sigma}{\sqrt{n}}$
approximate confidence interval for μ	$\left(\overline{x} - z \frac{s}{\sqrt{n}} , \overline{x} + z \frac{s}{\sqrt{n}} \right)$	

Trigonometry		
	$\sin^2(A) + \cos^2(A) = 1$	
Pythagorean identities	$\tan^2(A) + 1 = \sec^2(A)$	
	$\cot^2(A) + 1 = \csc^2(A)$	
	$\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$	
angle sum and	$\sin(A-B) = \sin(A)\cos(B) - \cos(A)\sin(B)$	
difference identities	$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$	
	$\cos(A-B) = \cos(A)\cos(B) + \sin(A)\sin(B)$	
	$\sin(2A) = 2\sin(A)\cos(A)$	
double-angle	$\cos(2A) = \cos^2(A) - \sin^2(A)$	
identities	$=1-2\sin^2(A)$	
	$= 2\cos^2(A) - 1$	
	$\sin(A)\sin(B) = \frac{1}{2}\left(\cos(A-B) - \cos(A+B)\right)$	
	$\cos(A)\cos(B) = \frac{1}{2}\left(\cos(A-B) + \cos(A+B)\right)$	
product identities	$\sin(A)\cos(B) = \frac{1}{2}\left(\sin(A+B) + \sin(A-B)\right)$	
	$\cos(A)\sin(B) = \frac{1}{2}\left(\sin(A+B) - \sin(A-B)\right)$	

Vectors and matrices			
magnitude	$\begin{vmatrix} \boldsymbol{a} \end{vmatrix} = \begin{vmatrix} a_1 \\ a_2 \\ a_3 \end{vmatrix} = \sqrt{a_1^2 + a_2^2 + a_3^2}$		
	$\boldsymbol{a}.\boldsymbol{b} = \boldsymbol{a} \boldsymbol{b} \cos(\theta)$		
scalar (dot) product	$a \cdot b = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3$		
vector equation of a line	r=a+kd		
Cartesian equation of a line	$\frac{x-a_1}{d_1} = \frac{y-a_2}{d_2} = \frac{z-a_3}{d_3}$		
	$\boldsymbol{a} \times \boldsymbol{b} = \boldsymbol{a} \boldsymbol{b} \sin(\theta) \hat{\boldsymbol{n}}$		
vector (cross) product	$\boldsymbol{a} \times \boldsymbol{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$		
vector projection	$\boldsymbol{a} \text{ on } \boldsymbol{b} = \boldsymbol{a} \cos(\theta)\hat{\boldsymbol{b}} = (\boldsymbol{a}.\hat{\boldsymbol{b}})\hat{\boldsymbol{b}}$		
vector equation of a plane	$r.n=a.\overline{n}$		
Cartesian equation of a plane	ax + by + cz + d = 0		
determinant	If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then $\det(A) = ad - bc$		
multiplicative inverse matrices	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$, $\det(A) \neq 0$	
	dilation	$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$	
linear transformations	rotation	$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$	
	reflection (in the line $y = x \tan(\theta)$)	$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$	

QCE Specialist Mathematics Suggested Solutions Trial Paper 1 Tech-free

Quality educational content

Kilbaha Education PO Box 2227 Kew Vic 3101 Australia Tel: (03) 9018 5376 kilbaha@gmail.com https://kilbaha.com.au

QUESTION 1 ANSWER C

The circle has radius 2, one of the solutions is u = 2i and $u^3 = 8i^3 = -8i$ but P(u) = 0 so $P(z) = z^3 + 8i = 0$

QUESTION 2 ANSWER D

Let z = x + yi $\overline{z} = x - yi$, checking each alternative,

(A)
$$|z+1| = |z-i| \Rightarrow \sqrt{(x+1)^2 + y^2} = \sqrt{x^2 + (y-1)^2}$$

 $x^2 + 2x + 1 + y^2 = x^2 + y^2 - 2y + 1 \Rightarrow y = -x$

(B)
$$|z-1| = |z+i| \Rightarrow \sqrt{(x-1)^2 + y^2} = \sqrt{x^2 + (y+1)^2}$$

 $x^2 - 2x + 1 + y^2 = x^2 + y^2 + 2y + 1 \Rightarrow y = -x$

- (C) $\operatorname{Re}(z) + \operatorname{Im}(z) = 0 \qquad \Rightarrow y = -x$
- (D) $\{z: \operatorname{Arg}(z) = -\frac{\pi}{4}\} \cup \{z: \operatorname{Arg}(z) = \frac{3\pi}{4}\}$ are two rays from the origin, making angles of $-\frac{\pi}{4}$ and $\frac{3\pi}{4}$ however the origin is **not** included, it is not the full line y = -x

QUESTION 3 ANSWER D

The vector $y = 2\hat{i} - 3\hat{j} + 4\hat{k}$ is perpendicular to the plane 2x - 3y + 4z = 12.

QUESTION 4 ANSWER A

An approximate confidence interval for μ is given by $\left(\overline{x} - z \frac{s}{\sqrt{n}}, \overline{x} + z \frac{s}{\sqrt{n}}\right)$.

width of a confidence interval with sample size *n* is $\frac{2zs}{\sqrt{n}}$

width of a confidence interval with sample size 4n is $\frac{2zs}{\sqrt{4n}} = \frac{2zs}{2\sqrt{n}} = \frac{zs}{\sqrt{n}}$

The width of the confidence interval has been halved, that is it has been decreased by a factor of 2.

QUESTION 5 ANSWER C

$$\operatorname{cosec}(x) = \frac{1}{\sin(x)} = \frac{\sqrt{5}}{2} , \quad \sin(x) = \frac{2}{\sqrt{5}}$$

Since $\frac{\pi}{2} < x < \pi$ is in the 2nd quadrant
 $\tan(x) < 0 \implies \tan(x) = -2$
 $\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)} = \frac{-4}{1 - 4} = \frac{4}{3}$
 $\cot(2x) = \frac{3}{4}$

© Kilbaha Education This page must be counted in surveys by Copyright Agency Limited (CAL) http://copyright.com.au

QUESTION 11

$$\int \frac{3x-5}{\sqrt{25-9x^2}} dx \qquad \text{separate out into two integrals}$$
$$= 3 \int \frac{x}{\sqrt{25-9x^2}} dx - 5 \int \frac{1}{\sqrt{25-9x^2}} dx \qquad \text{M1}$$

$$\int \sqrt{23-9x} \qquad \int \sqrt{23-9x}$$

$$let \ u = 25-9x^2 \qquad let \ v = 3x$$

$$du \qquad dv \qquad M1$$

$$\frac{du}{dx} = -18x \qquad \qquad \frac{dv}{dx} = 3$$
$$= -\frac{3}{2} \int u^{-\frac{1}{2}} du - \frac{5}{2} \int \frac{1}{1-\frac{1}{2}} dv$$

$$= -\frac{1}{18} \int u^{-1} du^{-1} = -\frac{1}{6} \left(2u^{\frac{1}{2}} \right) + \frac{5}{3} \cos^{-1} \left(\frac{v}{5} \right) + c$$
A2

$$= -\frac{1}{3}\sqrt{25 - 9x^2} + \frac{5}{3}\cos^{-1}\left(\frac{3x}{5}\right) + c$$
 A1

for
$$|x| < \frac{5}{3}$$
 $b = \frac{5}{3}$ A1

alternatively $= -\frac{1}{3}\sqrt{25-9x^2} - \frac{5}{3}\sin^{-1}\left(\frac{3x}{5}\right) + c$ for $|x| < \frac{5}{3}$ $b = \frac{5}{3}$

QUESTION 12

$$v = \frac{dx}{dt} = \frac{9}{81 - 4t^2}$$

$$D = \int_0^3 \frac{9}{81 - 4t^2} dt \qquad \text{by partial fractions} \qquad A1$$

$$\frac{9}{81 - 4t^2} = \frac{A}{9 - 2t} + \frac{B}{9 + 2t} = \frac{A(9 + 2t) + B(9 - 2t)}{(9 - 2t)(9 + 2t)} = \frac{9(A + B) + 2t(A - B)}{81 - 4t^2}$$

$$A + B = 1$$

$$A - B = 0 \qquad A = B = \frac{1}{2}$$
$$D = \frac{1}{2} \int_{0}^{3} \left(\frac{1}{9 + 2t} + \frac{1}{9 - 2t}\right) dt$$
A1

$$D = \frac{1}{2} \left[\frac{1}{2} \log_{e} \left(|9 + 2t| \right) - \frac{1}{2} \log_{e} \left(|9 - 2t| \right) \right]_{0}^{3}$$

$$D = \frac{1}{4} \left[\log_{e} \left(\left| \frac{9 + 2t}{9 - 2t} \right| \right) \right]_{0}^{3} = \frac{1}{4} \left[\log_{e} \left(\frac{15}{3} \right) - \log_{e} \left(1 \right) \right]$$
A1

$$D = \frac{1}{4} \log_e(5)$$
 A1

© Kilbaha Education This page must be counted in surveys by Copyright Agency Limited (CAL) <u>http://copyright.com.au</u> https://kilbaha.com.au

M2