MATHEMATICS QUESTIONS BY TOPICS

Í Kilbaha Educatio

Quality educational content

FINANCIAL MATNEMATICS

20 Extended Answer uc tions with curriculum referencesand agtailed answers

- Click here for 10 question index
- Click hereror he answer index
- Scan or click the QR code for more information

Student Book

Kilbaha Education	(Est. 1978)	(ABN 47 065111 373)	Tel: (03) 90185376
PO Box 2227			
Kew Vic 3101			
Australia			Email: kilbaha@gmail.com

Mathematics Questions by Topics
 Financial Mathematics - Extended Answer

© This is a copyright Kilbaha Education digital publication supplied in interactive PDF with a school licence to reproduce for all teachers and students on a single school site for unlimited and permanent use in printed format and electronic format on all devices. Access for teachers and students from the single school site is also permitted from a secure password protected school-based server. Intranet use ONLY. Uploading to the Internet is expressly forbidden.

Index - Click on the question.

Q	Topic	Australian Curriculum Reference	Q	Topic	Australian Curriculum Reference
1	Recursion and financial arithmetic	ACMGM071 ACMGM073	11	Compound interest, loans and investments	ACMGM096
2	First order linear recurrence relations	ACMGM070 ACMGM077	12	Depreciation of assets	ACMGM070
3	Compound interest, loans and investments	ACMGM096	13	Geometric sequence	ACMGM071 ACMGM073
4	Geometric sequence	ACMGM071 ACMGM073	14	Loans, investments and annuities	ACMGM098
5	Loans, investments and annuities	ACMGM070 ACMGM095 ACMGM098	15	Compound interest, loans and investments	ACMGM096
6	Annuities and Perpetuities	ACMGM099 ACMGM100	16	Recursion and financial arithmetic	ACMGM071 ACMGM073
7	Geometric sequence	ACMGM071 ACMGM073	17	Geometric sequence	ACMGM071 ACMGM073
8	Depreciation of assets	ACMGM070 ACMEM174	18	Geometric sequence and Arithmetic sequence	ACMGM070 ACMGM074
9	Loans and compound interest	ACMEM173	19	Depreciation of assets	ACMGM070 ACMGM074
10	Growth and decay in sequences	ACMGM067 ACMGM071	20	Loans, investments and annuities	ACMGM096

Creator: William Paul Healy
Title: Mathematics Questions by Topics - Financial Mathematics - 20 Extended Answer Questions ISBN: 9781922881090 (eBook)
Series: Mathematics Questions by Topics
Target Audience: School age. Secondary. Subjects: Mathematics
Other Creators: Barbara Clarice Healy, Vivienne Bond

[^0]Get more questions by clicking on or scanning the QR code.

Mathematics Questions by Topics

Question 1 (7 marks)

Jeff runs a business in which he does the final stitching on quilts with a quilting machine. Jeff chooses the reducing balance method to calculate the depreciation on his new quilting machine.
The value of the quilting machine, in dollars, after n years, Q_{n} can be modelled by the recurrence relation:

$$
Q_{0}=27000, \quad Q_{n+1}=0.91 Q_{n}
$$

a. What amount, in dollars, did Jeff pay for the new machine?
b. Show, with recursion, that the value of the machine after 2 years is $\$ 22358.70$ by filling in the boxes below with the appropriate values.

c. What is the annual percentage rate of depreciation used by Jeff?

Get more questions by clicking on or scanning the QR code.

Mathematics Questions by Topics

Financial Mathematics - Extended Answer
Question 1
Source: K21FM2Q5

Question 1 (continued)

d. After how many years will the value of Jeff's quilting machine first fall below $\$ 12000$?

1 mark
\qquad
\qquad
\qquad
\qquad

A rule of the form $Q_{n}=a \times b^{n}$ can be used to determine the value, in dollars, of the quilting machine, Q_{n}, after n years.
e. Write down this rule for Q_{n}.

1 mark

Jeff claims the machine's depreciation as a tax deduction each year.
f. By how much does the machine depreciate during the fourth year? Give your answer to the nearest whole dollar.

1 mark
\qquad
\qquad
\qquad
END OF QUESTION 1

Get more questions
by clicking on or scanning the QR code.

Page 3

Financial Mathematics - Extended Answer
Question 1
Source: K21FM2Q5

Curriculum	Subject	Topic	Description
Australia	General Mathematics Unit 3	Geometric sequence	Use recursion to generate a geometric sequence (ACMGM071) Deduce a rule for the nth term of a particular geometric sequence from the pattern of the sequence and use this rule to make predictions (ACMGM073)
Victoria	General Mathematics Unit 2	Recursion and financial arithmetic	The concept of geometric sequence as a function and its recursive specification
New South Wales	Mathematics Advanced Stage 6	Geometric sequences and series	Recognise and use the recursive definition of a geometric sequence: $T n=r T n-1, T_{1}=a$

Get more questions
by clicking on or scanning the QR code.

Curriculum	Subject	Topic	Description
Australia	General Mathematics Unit 4	Loans, investment, annuities	With the aid of a calculator or computer based financial software, solve problems involving compound interest loans or investments; for example, determining the future value of a loan, the number of compounding periods for an investment to exceed a given value, the interest rate needed for an investment to exceed a given value. (ACMGM096)
Victoria	General Mathematics Unit 3,4	Compound interest investment	Use of technology with financial modelling functionality to solve problems involving annuity investments, including determining the future value of an investment after a number of compounding periods, the number of compounding periods for the investment to exceed a given value and the interest rate or payment amount needed for an investment to exceed a given value in a given time.
New South Wales	Mathematics Advanced Stage 6	Financial Mathematics	Use an online calculator to investigate the effect of the interest rate, the repayment amount or the making of an additional lump-sum payment, on the time taken to repay a loan

End of
 MATHEMATICS QUESTIONS BY TOPICS

MATHEMATICS QUESTIONS BY TOPICS

Kilbaha Education
Quality educational content

FINANCIAL MATHEMATICS Answers to 20 Extended Answer Questions

- Click here for the answer index
- Check your answer
- Scan or click the QR code for more questions

Kilbaha Education	(Est. 1978)	(ABN 47 065 111 373)
PO Box 2227		
Kew Vic 3101		
Australia		Tel: (03) 9018 5376

Mathematics Questions by Topics
 Financial Mathematics - Extended Answer

© This is a copyright Kilbaha Education digital publication supplied in interactive PDF with a school licence to reproduce for all teachers and students on a single school site for unlimited and permanent use in printed format and electronic format on all devices. Access for teachers and students from the single school site is also permitted from a secure password protected school-based server. Intranet use ONLY. Uploading to the Internet is expressly forbidden.

Index - Click on the answer. ACR = Australian curriculum Reference

Q	Topic	ACR	Q	Topic	ACR
1	Recursion and financial arithmetic	ACMGM071 ACMGM073	11	Compound interest, loans and investments	ACMGM096
2	First order linear recurrence relations	ACMGM070 ACMGM077	12	Depreciation of assets	ACMGM070
3	Compound interest, loans and investments	ACMGM096	13	Geometric sequence	ACMGM071 ACMGM073
4	Geometric sequence	ACMGM071 ACMGM073	14	Loans, investments and annuities	ACMGM098
5	Loans, investments and annuities	ACMGM070 ACMGM095 ACMGM098	15	Compound interest, loans and investments	ACMGM096
6	Annuities and Perpetuities	ACMGM099 ACMGM100	16	Recursion and financial arithmetic	ACMGM071 ACMGM073
7	Geometric sequence	ACMGM071 ACMGM073	17	Geometric sequence	ACMGM071 ACMGM073
8	Depreciation of assets	ACMGM070 ACMEM174	18	Geometric sequence and Arithmetic sequence	ACMGM070 ACMGM074
9	Loans and compound interest	ACMEM173	19	Depreciation of assets	ACMGM070 ACMGM074
10	Growth and decay in sequences	ACMGM067 ACMGM071	20	Loans, investments and annuities	ACMGM096

Get more questions by clicking on or scanning the QR code.

Mathematics Questions by Topics

Financial Mathematics - Extended Answer
Source: K21FM2S5

Question 1 (7 marks)

Get more questions by clicking on or scanning the QR code.

Mathematics Questions by Topics

Financial Mathematics - Extended Answer
Source: K15FM2S3

Question 20 (4 marks)

a. Use TVM solver $\begin{aligned} & N=18 \times 12 \\ & I=5.2 \\ & P V=332000 \\ & P M T= \\ & F V=0 \\ & P / Y=12 \\ & C / Y=12 \end{aligned}$ This gives $P M T=\$ 2370$	b. Use TVM solver $\begin{aligned} & N=60 \\ & I=5.2 \\ & P V=332000 \\ & P M T=-2370.0769 \\ & F V= \\ & P / Y=12 \\ & C / Y=12 \end{aligned}$ This gives FV $=\$ 268334$ Amount owing $=268334-150000=$ $\$ 118,334$
c. Use TVM solver $\begin{aligned} & N= \\ & I=5.2 \\ & P V=118334 \\ & P M T=-1916 \\ & F V=0 \\ & P / Y=12 \\ & C / Y=12 \end{aligned}$ This gives $N=72$ 72 months $=6$ years.	d. Actual time of repayment will be a little over 72 months. Use TVM solver $\begin{aligned} & N=72 \\ & I=5.2 \\ & P V=118334 \\ & P M T=-1916 \\ & F V= \\ & P / Y=12 \\ & C / Y=12 \end{aligned}$ This gives $F V=-63.93631138$ Use TVM solver $\begin{aligned} & N=1 \\ & I=5.2 \\ & P V=63.93631138 \\ & P M T= \\ & F V=0 \\ & P / Y=12 \\ & C / Y=12 \end{aligned}$ This gives $F V=\$ 64.22$

END OF ANSWERS TO QUESTION 20

Mathematics Questions by Topics
Financial Mathematics - Extended Answer

End of
 MATHEMATICS QUESTIONS BY TOPICS FINANCIAL MATHEMATICS
 Answers to 20 Extended Answer Questions

MATHEMATICS QUESTIONS BY TOPICS

Kilbaha Education
Quality educational content

FINANCIAL MATHEMATICS

20 Extended Answer Questions STUDENT BOOK

- Click here for the question index
- Scan or click the QR codes for more information

Kilbaha Education	(Est. 1978)	(ABN 47 065 111 373)
PO Box 2227	Tel: (03) 90185376	
Kew Vic 3101		
Australia		Email: kilbaha@gmail.com

Mathematics Questions by Topics
 Financial Mathematics - Extended Answer

© This is a copyright Kilbaha Education digital publication supplied in interactive PDF with a school licence to reproduce for all teachers and students on a single school site for unlimited and permanent use in printed format and electronic format on all devices. Access for teachers and students from the single school site is also permitted from a secure password protected school-based server. Intranet use ONLY. Uploading to the Internet is expressly forbidden.

Index - Click on the question.

Q	Topic	Australian Curriculum Reference	Q	Topic	Australian Curriculum Reference
1	Recursion and financial arithmetic	ACMGM071 ACMGM073	11	Compound interest, loans and investments	ACMGM096
2	First order linear recurrence relations	ACMGM070 ACMGM077	12	Depreciation of assets	ACMGM070
3	Compound interest, loans and investments	ACMGM096	13	Geometric sequence	ACMGM071 ACMGM073
4	Geometric sequence	ACMGM071 ACMGM073	14	Loans, investments and annuities	ACMGM098
5	Loans, investments and annuities	ACMGM070 ACMGM095 ACMGM098	15	Compound interest, loans and investments	ACMGM096
6	Annuities and Perpetuities	ACMGM099 ACMGM100	16	Recursion and financial arithmetic	ACMGM071 ACMGM073
7	Geometric sequence	ACMGM071 ACMGM073	17	Geometric sequence	ACMGM071 ACMGM073
8	Depreciation of assets	ACMGM070 ACMEM174	18	Geometric sequence and Arithmetic sequence	ACMGM070 ACMGM074
9	Loans and compound interest	ACMEM173	19	Depreciation of assets	ACMGM070 ACMGM074
10	Growth and decay in sequences	ACMGM067 ACMGM071	20	Loans, investments and annuities	ACMGM096

Creator: William Paul Healy
Title: Mathematics Questions by Topics - Financial Mathematics - 20 Extended Answer Questions ISBN: 9781922881090 (eBook)
Series: Mathematics Questions by Topics
Target Audience: School age. Secondary. Subjects: Mathematics
Other Creators: Barbara Clarice Healy, Vivienne Bond

[^1]Get more questions by clicking on or scanning the QR code.

Index

Mathematics Questions by Topics
Page 1
Financial Mathematics - Extended Answer
Question 2
Source: K21FM2Q6

Question 2 (3 marks)

Jeff buys a second quilting machine. The initial value of this machine is $\$ 36000$.
He decides to depreciate the machine using the unit cost method.
The machine quilts 340 pieces each year.
After five years, the value of the machine is $\$ 20700$.
a. Show that the machine depreciates by $\$ 9$ for every piece it quilts.
\qquad
\qquad
\qquad
b. Let V_{n} be the value of the machine after n years.

Write down a recurrence relation, in terms of V_{0}, V_{n+1} and V_{n} that could be used to model the value of the machine using this unit cost depreciation method.

1 mark
c. The value of the machine continues to depreciate by $\$ 9$ for every piece quilted.

The machine has a scrap value of $\$ 1962$.
After how many pieces quilted will the machine reach its scrap value? 1 mark
\qquad
\qquad

END OF QUESTION 2

[^0]: About the Authors: William Paul Healy BSc BA Dip Ed and Barbara Clarice Healy BSc BEd are experienced mathematics and science teachers each with more than 30 years classroom experience. As principal writers for Kilbaha Education they bring a wealth of pedagogical knowledge and expertise to their many publications. The quality of their work has been demonstrated over the years with content written for the VCE examinations in Victoria Australia.

[^1]: About the Authors: William Paul Healy BSc BA Dip Ed and Barbara Clarice Healy BSc BEd are experienced mathematics and science teachers each with more than 30 years classroom experience. As principal writers for Kilbaha Education they bring a wealth of pedagogical knowledge and expertise to their many publications. The quality of their work has been demonstrated over the years with content written for the VCE examinations in Victoria Australia.

