MATHEMATICS QUESTIONS BY TOPICS

FINANCIAL MATNEMATICS

20 Extended Answer questions with curriculum references and optailed answers

- Click here for the question index
- Click here for he answer index
- Scan or click the QR code for more information

Kilbaha Education	(Est. 1978)	(ABN 47 065 111 373)	Tel: (03) 9018 5376
PO Box 2227			
Kew Vic 3101			Email: <u>kilbaha@gmail.com</u>
Australia			Web: https://kilbaha.com.au

© This is a copyright Kilbaha Education digital publication supplied in interactive PDF with a school licence to reproduce for all teachers and students on a single school site for unlimited and permanent use in printed format and electronic format on all devices. Access for teachers and students from the single school site is also permitted from a secure password protected school-based server. Intranet use ONLY. Uploading to the Internet is expressly forbidden.

Index – Click on the question.

		Australian			Australian
Q	Торіс	Reference	Q	Торіс	Reference
1	Recursion and financial arithmetic	ACMGM071 ACMGM073	11	Compound interest, loans and investments	ACMGM096
2	First order linear recurrence relations	ACMGM070 ACMGM077	12	Depreciation of assets	ACMGM070
3	Compound interest, loans and investments	ACMGM096	13	Geometric sequence	ACMGM071 ACMGM073
4	Geometric sequence	ACMGM071 ACMGM073	14	Loans, investments and annuities	ACMGM098
5	Loans, investments and annuities	ACMGM070 ACMGM095 ACMGM098	15	Compound interest, loans and investments	ACMGM096
6	Annuities and Perpetuities	ACMGM099 ACMGM100	16	Recursion and financial arithmetic	ACMGM071 ACMGM073
7	Geometric sequence	ACMGM071 ACMGM073	17	Geometric sequence	ACMGM071 ACMGM073
8	Depreciation of assets	ACMGM070 ACMEM174	18	Geometric sequence and Arithmetic sequence	ACMGM070 ACMGM074
9	Loans and compound interest	ACMEM173	19	Depreciation of assets	ACMGM070 ACMGM074
10	Growth and decay in sequences	ACMGM067 ACMGM071	20	Loans, investments and annuities	ACMGM096

Creator: William Paul Healy	All rights reserved.
Title: Mathematics Questions by Topics – Financial	No part of this publication may be
Mathematics - 20 Extended Answer Questions	reproduced, stored in a retrieval system
ISBN: 9781922881090 (eBook)	or transmitted in any form by any means
Series: Mathematics Questions by Topics	whatsoever without the prior permission
Target Audience: School age. Secondary.	of the copyright owner.
Subjects: Mathematics	Apply in writing to the publishers.
Other Creators: Barbara Clarice Healy, Vivienne Bond	

About the Authors: William Paul Healy BSc BA Dip Ed and Barbara Clarice Healy BSc BEd are experienced mathematics and science teachers each with more than 30 years classroom experience. As principal writers for Kilbaha Education they bring a wealth of pedagogical knowledge and expertise to their many publications. The quality of their work has been demonstrated over the years with content written for the VCE examinations in Victoria Australia.

Mathematics Questions by Topics	Page 1	
Financial Mathematics - Extended Answer	Question 1	Source: K21FM2Q5

Question 1 (7 marks)

Jeff runs a business in which he does the final stitching on quilts with a quilting machine. Jeff chooses the reducing balance method to calculate the depreciation on his new quilting machine.

The value of the quilting machine, in dollars, after *n* years, Q_n can be modelled by the recurrence relation:

 $Q_0 = 27000, \qquad Q_{n+1} = 0.91Q_n$

a. What amount, in dollars, did Jeff pay for the new machine?

1 mark

b. Show, with recursion, that the value of the machine after 2 years is \$22358.70 by filling in the boxes below with the appropriate values.

2 marks

c. What is the annual percentage rate of depreciation used by Jeff?

1 mark

© Kilbaha Education

Mathe	ematics Questions by Topics		Page 2
Finan	cial Mathematics - Extended Answer	Question 1	Source: K21FM2Q5
Ques	tion 1 (continued)		
d.	After how many years will the value of	Jeff's quilting machir	ne first fall below \$12000?
			1 mark
	A rule of the form $Q_n = a \times b^n$ can be	used to determine the	e value, in dollars, of the

e. Write down this rule for Q_n .

quilting machine, Q_n , after *n* years.

1 mark

Jeff claims the machine's depreciation as a tax deduction each year.

f. By how much does the machine depreciate during the fourth year? Give your answer to the nearest whole dollar.

1 mark

END OF QUESTION 1

© Kilbaha Education

https://kilbaha.com.au

Page 3

Financial Mathematics - Extended Answer

Question 1

Source: K21FM2Q5

Curriculum	Subject	Торіс	Description
Australia	General Mathematics Unit 3	Geometric sequence	Use recursion to generate a geometric sequence (ACMGM071) Deduce a rule for the nth term of a particular geometric sequence from the pattern of the sequence and use this rule to make predictions (ACMGM073)
Victoria	General Mathematics Unit 2	Recursion and financial arithmetic	The concept of geometric sequence as a function and its recursive specification
New South Wales	Mathematics Advanced Stage 6	Geometric sequences and series	Recognise and use the recursive definition of a geometric sequence: $Tn=rTn-1$, $T_1=a$

Question 20

Page 2 Source: K15FM2Q3

Curriculum	Subject	Торіс	Description
Australia	General Mathematics Unit 4	Loans, investment, annuities	With the aid of a calculator or computer based financial software, solve problems involving compound interest loans or investments; for example, determining the future value of a loan, the number of compounding periods for an investment to exceed a given value, the interest rate needed for an investment to exceed a given value. (ACMGM096)
Victoria	General Mathematics Unit 3,4	Compound interest investment	Use of technology with financial modelling functionality to solve problems involving annuity investments, including determining the future value of an investment after a number of compounding periods, the number of compounding periods for the investment to exceed a given value and the interest rate or payment amount needed for an investment to exceed a given value in a given time.
New South Wales	Mathematics Advanced Stage 6	Financial Mathematics	Use an online calculator to investigate the effect of the interest rate, the repayment amount or the making of an additional lump-sum payment, on the time taken to repay a loan

End of **MATHEMATICS QUESTIONS BY TOPICS FINANCIAL MATHEMATICS 20 Extended Answer Questions**

MATHEMATICS QUESTIONS BY TOPICS

FINANCIAL MATHEMATICS Answers to 20 Extended Answer Questions

- Click here for the answer index
- Check your answer
- Scan or click the QR code for more questions

Kilbaha Education	(Est. 1978)	(ABN 47 065 111 373)	Tel: (03) 9018 5376
PO Box 2227	. ,		
Kew Vic 3101			Email: <u>kilbaha@gmail.com</u>
Australia			Web: https://kilbaha.com.au

© This is a copyright Kilbaha Education digital publication supplied in interactive PDF with a school licence to reproduce for all teachers and students on a single school site for unlimited and permanent use in printed format and electronic format on all devices. Access for teachers and students from the single school site is also permitted from a secure password protected school-based server. Intranet use ONLY. Uploading to the Internet is expressly forbidden.

Index – Click on the answer. ACR = Australian curriculum Reference

Q	Торіс	ACR	Q	Торіс	ACR
1	Recursion and financial arithmetic	ACMGM071 ACMGM073	11	Compound interest, loans and investments	ACMGM096
2	First order linear recurrence relations	ACMGM070 ACMGM077	12	Depreciation of assets	ACMGM070
3	Compound interest, loans and investments	ACMGM096	13	Geometric sequence	ACMGM071 ACMGM073
4	Geometric sequence	ACMGM071 ACMGM073	14	Loans, investments and annuities	ACMGM098
5	Loans, investments and annuities	ACMGM070 ACMGM095 ACMGM098	15	Compound interest, loans and investments	ACMGM096
6	Annuities and Perpetuities	ACMGM099 ACMGM100	16	Recursion and financial arithmetic	ACMGM071 ACMGM073
7	Geometric sequence	ACMGM071 ACMGM073	17	Geometric sequence	ACMGM071 ACMGM073
8	Depreciation of assets	ACMGM070 ACMEM174	18	Geometric sequence and Arithmetic sequence	ACMGM070 ACMGM074
9	Loans and compound interest	ACMEM173	19	Depreciation of assets	ACMGM070 ACMGM074
10	Growth and decay in sequences	ACMGM067 ACMGM071	20	Loans, investments and annuities	ACMGM096

Financial Mathematics - Extended Answer

Source: K21FM2S5

Question 1 (7 marks)

a.		b.
\$27000		$Q_1 = 0.91 \times 27000 = 24570$
	(1 mark)	$Q_2 = 0.91 \times 24570 = 22358.70$ (2 marks)
с.		d. 9 years
100 – 91 = 9%	(1 mark)	By continuing to multiply by 0.91, we get $Q_8 = 12696.8 \dots$ $Q_9 = 11554.1 \dots$ Alternatively, solving the equation $27000 \times 0.91^n \le 12000$ gives $n \ge 8.5984 \dots$ Now in this problem, <i>n</i> takes integral values, so $n = 9$. (1 mark)
е.		f. \$1831
$Q_n = 27000 imes 0.91^n$		$Q_3 = 20346.417 \dots$
	(1 mark)	During the fourth year, the machine will depreciate by 9% of 20346.417 i.e. \$1831 to the nearest dollar. (1 mark)

END OF ANSWERS TO QUESTION 1

Financial Mathematics - Extended Answer

Source: K15FM2S3

Question 20 (4 marks)

a.		b. Use TVM solver
Use TVM solver		N = 60
$N = 18 \times 12$		1=52
/= 5.2		PV = 332000
PV = 332000		PMT = -2370.0769
PMT =		FV =
FV = 0		P/Y = 12
P/Y = 12		C/Y = 12
C/Y = 12		This gives $FV = 268334
This gives <i>PMT</i> = \$2370		Amount owing = 268334 – 150000 =
,		\$118.334
	(1 mark)	(1 mark)
	((
c. Use TVM solver N = I = 5.2 PV = 118334 PMT = -1916 FV = 0 P/Y = 12 C/Y = 12 This gives $N = 72$ 72 months = 6 years.	(1 mark)	d. Actual time of repayment will be a little over 72 months. Use TVM solver N = 72 I = 5.2 PV = 118334 PMT = -1916 FV = P/Y = 12 C/Y = 12 This gives $FV = -63.93631138$ Use TVM solver N = 1 I = 5.2 PV = 63.93631138 PMT = FV = 0 P/Y = 12 C/Y = 12 This gives $FV = \$64.22$ (1 mark)

END OF ANSWERS TO QUESTION 20

Financial Mathematics - Extended Answer

Source: K15FM2S3

End of MATHEMATICS QUESTIONS BY TOPICS FINANCIAL MATHEMATICS Answers to 20 Extended Answer Questions

MATHEMATICS QUESTIONS BY TOPICS

FINANCIAL MATHEMATICS 20 Extended Answer Questions STUDENT BOOK

- Click here for the question index
- Scan or click the QR codes for more information

Kilbaha Education	(Est. 1978)	(ABN 47 065 111 373)	Tel: (03) 9018 5376
PO Box 2227			
Kew Vic 3101			Email: kilbaha@gmail.com
Australia			Web: https://kilbaha.com.au

© This is a copyright Kilbaha Education digital publication supplied in interactive PDF with a school licence to reproduce for all teachers and students on a single school site for unlimited and permanent use in printed format and electronic format on all devices. Access for teachers and students from the single school site is also permitted from a secure password protected school-based server. Intranet use ONLY. Uploading to the Internet is expressly forbidden.

Index – Click on the question.

		Australian			Australian
Q	Торіс	Reference	Q	Торіс	Reference
1	Recursion and financial arithmetic	ACMGM071 ACMGM073	11	Compound interest, loans and investments	ACMGM096
2	First order linear recurrence relations	ACMGM070 ACMGM077	12	Depreciation of assets	ACMGM070
3	Compound interest, loans and investments	ACMGM096	13	Geometric sequence	ACMGM071 ACMGM073
4	Geometric sequence	ACMGM071 ACMGM073	14	Loans, investments and annuities	ACMGM098
5	Loans, investments and annuities	ACMGM070 ACMGM095 ACMGM098	15	Compound interest, loans and investments	ACMGM096
6	Annuities and Perpetuities	ACMGM099 ACMGM100	16	Recursion and financial arithmetic	ACMGM071 ACMGM073
7	Geometric sequence	ACMGM071 ACMGM073	17	Geometric sequence	ACMGM071 ACMGM073
8	Depreciation of assets	ACMGM070 ACMEM174	18	Geometric sequence and Arithmetic sequence	ACMGM070 ACMGM074
9	Loans and compound interest	ACMEM173	19	Depreciation of assets	ACMGM070 ACMGM074
10	Growth and decay in sequences	ACMGM067 ACMGM071	20	Loans, investments and annuities	ACMGM096

Creator: William Paul Healy	All rights reserved.
Title: Mathematics Questions by Topics – Financial	No part of this publication may be
Mathematics - 20 Extended Answer Questions	reproduced, stored in a retrieval system
ISBN: 9781922881090 (eBook)	or transmitted in any form by any means
Series: Mathematics Questions by Topics	whatsoever without the prior permission
Target Audience: School age. Secondary.	of the copyright owner.
Subjects: Mathematics	Apply in writing to the publishers.
Other Creators: Barbara Clarice Healy, Vivienne Bond	

About the Authors: William Paul Healy BSc BA Dip Ed and Barbara Clarice Healy BSc BEd are experienced mathematics and science teachers each with more than 30 years classroom experience. As principal writers for Kilbaha Education they bring a wealth of pedagogical knowledge and expertise to their many publications. The quality of their work has been demonstrated over the years with content written for the VCE examinations in Victoria Australia.

Mathe	ematics Ques	stions by Topics				Page 1		
Financ	inancial Mathematics - Extended Answer Question 2 Source: K21FM							
Quest	tion 2 (3 mar	ks)						
Jeff bu He dee The m After fi	uys a second cides to depre achine quilts ive years, the	quilting machine. The ciate the machine of 340 pieces each ye value of the machine	he initial using the ear. ne is \$20	value of this r e unit cost me 0700.	machine is \$36000. thod.			
a.	Show that th	ne machine deprecia	ates by \$	9 for every pi	ece it quilts.	1 mark		
b.	Let V_n be the value of the machine after <i>n</i> years.							
	Write down a recurrence relation, in terms of V_0 , V_{n+1} and V_n that could be used to model the value of the machine using this unit cost depreciation method.							
						1 mark		
C.	The value of the machine continues to depreciate by \$9 for every piece quilted. The machine has a scrap value of \$1962.							
	After how ma	any pieces quilted w	/ill the m	achine reach	its scrap value?	1 mark		

END OF QUESTION 2

© Kilbaha Education

https://kilbaha.com.au